Employment of Eugenia unifl ora in glycemic control and prevention of diabetes mellitus complications: a systematic review and meta-analysis

Authors

DOI:

https://doi.org/10.70151/6zhsh535

Keywords:

Blood glucose, Hyperglycemia, Phytotherapy, Plants, Medicinal

Abstract

Diabetes mellitus (DM) is a chronic disease with considerable morbidity and mortality. The use of medicinal plants, such as Eugenia uniflora L., is a promising adjuvant in the treatment of this disease. This systematic review and meta-analysis aimed to evaluate the effects of E. uniflora on glycemic control and prevention of DM complications. Searches were performed in Pubmed/Medline, Web of Science, Scopus and Embase databases. Eligibility criteria were clinical or in vivo preclinical trials that evaluated the use of E. uniflora in glycemic control and prevention of DM complications, written in English, French, Spanish and Portuguese. Three preclinical in vivo trials were included in the systematic review and two in the meta-analysis. All studies demonstrated that the administration of E. uniflora provided a beneficial result in glycemic control. Positive results were also observed in DM comorbidities and complications. In the meta-analysis, it was evidenced that the animals that received E. uniflora had reduced levels of glucose and triglycerides in relation to those that did not receive the treatment. Thus, E. uniflora helps in glycemic control and DM complications. However, it is necessary to carry out clinical trials to evaluate its use in patients with DM.

Downloads

Download data is not yet available.

References

American Diabetes Association (2014) Standards of medical care in diabetes. Diabetes Care 37Suppl1:S14 -S80

Amorim RG, Guedes GS, Vasconcelos SML, Santos JCF (2019) Kidney disease in diabetes mellitus: cross - linking between hyperglycemia, redox imbalance and inflammation. Arq Bras Cardiol 112(5):577–587. https://doi.org/10.5935/abc.20190077

Araujo NMP, Arruda HS, Farias DP, Molina G, Pereira GA, Pastore GM (2021) Plants from the genus Eugenia as promising therapeutic agents for the management of diabetes mellitus: A review. Food Res Int 142:110182. https://doi.org/10.1016/j.foodres.2021.110182

Auricchio MT, Bacchi EM (2003) Eugenia uniflora L. “brazilian cherry” leaves: pharmacobotanical, chemical and pharmacological properties. Rev Inst Adolfo Lutz 62(1):55-61. https://docs.bvsalud.org/biblioref/ses-sp/2003/ses-156/ses-156-4258.pdf

Braatz SM, Felipe ET, Kanunfre CC, Scomparin DX, Emilio HRO (2018) Insulinotropic and cytoprotective effect of the crude extract of Eugenia uniflora L. Colloq Vitae 10(3):42-53. https://doi.org/10.5747/cv.2018.v10.n3.v242

Brazil Ministry of Health (2006) National policy on medicinal plants and phytotherapics 9-21

Brazil Ministry of Health (2009) Ministry of Health prepares list of medicinal plants of interest to SUS 3-5

Cardoso JS, Oliveira PS, Bona NP, Vasconcellos FA, Baldissarelli J, Vizzotto M, Soares MSP, Ramos VP, Spanevello RM, Lencina CL, Tavares RG, Stefanello FM (2018) Antioxidant, antihyperglycemic, and antidyslipidemic effects of Brazilian-native fruit extracts in an animal model of insulin resistance. Redox Rep 23(1):41-46. https://doi.org.ez32.periodicos.capes.gov.br/10.1080/13510002.2017.1375709

Catalá A (2006) An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 38(9):1482-1495. https://doi.org/10.1016/j.biocel.2006.02.010

Cavan D, Harding J, Linnenkamp U, Makaroff L, Magliano D, Ogurtsova K, Shaw J (2016) Diabetes and cardiovascular disease. International Diabetes Federation. https://www.idf.org/our-activities/advocacy-awareness/resources-and-tools/90:diabetes-and-cardiovascular-disease-report.html

Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16(7):377-390. https://doi-org.ez32.periodicos.capes.gov.br/10.1038/s41581-020-0278-5

Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protect streptozotocin-induced oxidative stress and beta- cell damage in rat pancreas. Pharmacol Res 51(2):117-23. https://doi.org/10.1016/j.phrs.2004.06.002

Faria A, Persaud SJ (2017) Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacol Ther 172: 50-62. https://doi.org/10.1016/j.pharmthera.2016.11.013

Fatani SH, Babakr AT, Noureldin EM, Almarzouki AA (2016) Lipid peroxidation is associated with poor control of type-2 diabetes mellitus. Diabetes Metab Syndr 10(2): S64-7. https://doi.org/10.1016/j.dsx.2016.01.028. https://doi.org/10.1016/j.dsx.2016.01.028

Fatehi-Hassanabad Z, Chan CB, Furman BL (2010) Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol 636(1-3):8-17. https://doi.org/10.1016/j.ejphar.2010.03.048

Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA (2019) The effects of polyphenols and other bioactives on human health. Food Funct 10(2):514–528. https://doi-org.ez32.periodicos.capes.gov.br/10.1039/C8FO01997E

Hirano T (2018). Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb 25(9):771-782. https://doi.org/10.5551/jat.RV17023

Holaman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW (2008) 10- year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359(15):1577–1589. https://doi.org/ 10.1056/NEJMoa0806470

Hooijmans CR, Rovers MM, De Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol 14:43. https://doi.org/10.1186/1471-2288-14-43

https://revista-fitos.far.fiocruz.br/index.php/revistafitos/article/view/228/0?articlesBySimilarityPage=4

International Diabetes Federation (2021) IDF Diabetes Atlas: Tenth edition 7-64. Available in: https://diabetesatlas.org/atlas/tenth-edition/

Kamalakkannan N, Prince PSM (2006) Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clinic Pharmacol Toxicol 98(1):97-103. https://doi.org/10.1111/j.1742-7843.2006.pto_241.x

Karadsheh NS, Quttaineh NA, Karadsheh SN, El-Khateeb M (2021) Effect of combined G6PD deficiency and diabetes on protein oxidation and lipid peroxidation. BMC Endocr Disord 21(1):246. https://doi-org.ez32.periodicos.capes.gov.br/10.1186/s12902-021-00911-6

Keane KN, Cruzat VF, Carlessi R, Bittencourt PIH, Newsholme P (2015) Molecular events linking oxidative stress and inflammation to insulin resistance and β- cell dysfunction. Oxid Med Cell Longev 2015:181643. https://doi.org/10.1155/2015/181643

Kojta I, Chacinska M, Blachnio-Zabielska A (2020) Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 12(5):1305. https://doi.org/10.3390/nu12051305

Méndez JD, Xie J, Aguilar-Hernández M, Méndez-Valenzuela V (2010) Trends in advanced glycation end products research in diabetes mellitus and its complications. Mol Cell Biochem 341(1-2):33-41. https://doi.org/ 10.1007/s11010-010-0434-5

Meshkani R, Adeli K (2009) Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin Biochem 42(13-14):1331-1346. https://doi.org/10.1016/j.clinbiochem.2009.05.018

Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin, Zinman B (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353(25):2643-2653. https://doi.org/ 10.1056/NEJMoa052187

Nelson DL, Cox MM (2014) Lehninger 's Principles of Biochemistry, 6th ed., Porto Alegre: Artmed Editora 864-869

Nijveldt RJ, Nood E, Hoorn DE, Boelens PG, Norren K, Leeuwen PA (2017) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418-425. https://doi.org/10.1093/ajcn/74.4.418.

Oliveira PS, Chaves VC, Bona NP, Soares MSP, Cardoso JS, Vasconcellos FA, Tavares RG, Vizzotto M, Silva LMC, Grecco FB, Gamaro GD, Spanevello RM, Lencina CL, Reginatto FH, Stefanello FM (2017) Eugenia Uniflora fruit (red type) standardized extract: a potential pharmacological tool to diet- induced metabolic syndrome damage management. Biomed Pharmacother 92:935 -941. https://doi.org/10.1016/j.biopha.2017.05.131

Page MJ, MacKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brannan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372(71). https://doi.org/10.1186/s13643-021-01626-4

Patti AM, Giglio RV, Papanas N, Rizzo M, Rizvi AA (2019) Future perspectives on the pharmacological management of diabetic dyslipidemia. Expert Rev Clin Pharmacol 12(2):129-143. https://doi.org/10.1080/17512433.2019.156732

Peixoto ANM, Arruda HS, De Paulo FD, Molina G, Pereira GA, Pastore GM (2021) Plants from the genus Eugenia as promising therapeutic agents for the management of diabetes mellitus: A review. Food Res Intern 142:110182. https://doi.org/10.1016/j.foodres.2021.110182

Queiroz JMG, Suzuki MCM, Motta APR, Nogueira JMR, Carvalho EM (2015) Popular and scientific aspects of the use of Eugenia species as herbal medicine. Rev Fitos 9(2):73-159.

Reaven GM (2005) Compensatory hyperinsulinemia and the development of an atherogenic lipoprotein profile: the price paid to maintain glucose homeostasis in insulin-resistant individuals. Endocrinol Metab Clin North Am 34(1):49-62. https://doi.org/10.1016/j.ecl.2004.12.001

Ren N, Kim E, Li B, Pan H, Tong T, Yang CS, Tu Y (2019) Flavonoids alleviating insulin Resistance through inhibition of inflammatory signaling. J Agric Food Chem 67(19): 5361-5373. https://doi.org/10.1021/acs.jafc.8b05348

Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J (2019) Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224(2):242-253. https://doi.org/10.1016/j.imbio.2018.11.010

Ricketts ML, Ferguson BS (2018) Polyphenols: Novel signaling pathways. Curr Pharm Des 24(2):158-170. https://doi.org/10.2174/1381612824666171129204054

Rocha S, Sousa A, Ribeiro D, Correia CM, Silva VLM, Santos CMM, Silva MAS, Araújo AN, Fernandes E, Freitas M (2019). A study towards drug discovery for the management of type 2 diabetes mellitus through inhibition of the carbohydrate-hydrolyzing α -amylase enzymes and α- glucosidase by chalcone derivatives. Food Funct 10(9):5510-5520. https://doi.org/ 10.1039/c9fo01298b

Rodacki M, Teles M, Gabbay M (2021) Classification of diabetes. Official Guideline of the Brazilian Society of Diabetes 1-19

Salehi B, Ata A, Kumar NVA, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Ayatollahi SA, Fokou PVT, Kobarfard F, Zakaria ZA, Iriti M, Taheri Y, Martorell M, Sureda A, Setzer WN, Durazzo A, Lucarini M, Santini A, Capasso R, Ostrander EA, Atta-ur-Rahman, Choudhary MI, Cho WC, Sharifi-Rad J (2019) Antidiabetic potential of medicinal plants and their active components. Biomolecules 9(10):551. https://doi.org/10.3390/biom9100551

Schumacher NS, Colomeu TC, Figueiredo D, Carvalho V, Cazarin CB, Prado MA, Meletti LM, Zollner R (2015) Identification and antioxidant activity of the extracts of Eugenia uniflora leaves. Characterization of the anti-inflammatory properties of close extract on diabetes expression in an experimental model of spontaneous type 1 diabetes (NODMice). Antioxidants 4(4):662-680. https://doi.org/10.3390/antiox4040662

Shigidi MMT, Karrar WN (2021) Risk factors associated with the development of diabetic kidney disease in Sudanese patients with type 2 diabetes mellitus: A case-control study. Diabetes Metab Syndr 15(6):102320. https://doi.org/10.1016/j.dsx.2021.102320

Sobeh M, El-Raey M, Rezq S, Abdelfattah MAO, Petruk G, Osman S, El-Shazly AM, El-Beshbishy HA, Mahmoud MF, Wink M (2019) Chemical profiling of secondary metabolites of Eugenia uniflora and their antioxidant, anti-inflammatory, pain killing and anti-diabetic activities: A comprehensive approach. J Ethnopharmacol 240:111939. https://doi.org/10.1016/j.jep.2019.111939

Stanley MPP, Kamalakkannan N (2006) Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. J Biochem Mol Toxicol 20(2):96-102. https://doi.org/10.1002/jbt.20117

Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12):1231-1246. https://doi.org/10.3390/nu2121231

Tschiedel B (2014) Chronic complications of diabetes. J Bras Med 102(5):7-12. https://pesquisa.bvsalud.org/portal/resource/pt/lil-730199

Tundis R, Loizzo MR, Menichini F (2010) Natural Products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of aiabetes: An update. Mini Rev Med Chem 10(4):315-31. https://doi.org/10.2174/138955710791331007

Vilar L, Kater CE, Naves LA, Freitas MC, Fleseriu M (2016) Clinical endocrinology, 6th ed., Rio de Janeiro: Editora guanabara koong 1372-1376

Vizzotto M (2006) Phytochemicals in Eugenia uniflora (Eugenia uniflora L.): their potential in preventing and fighting diseases. In: III National Strawberry Symposium II Meeting on Small Fruits and Native Fruits of Mercosur. Embrapa Temperate Climate 29-34

Volpe CMO, Villar-Delfino PH, Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9(2):119. https://doi.org/10.1038/s41419-017-0135-z. PMid:29371661

World Health Statistics 2021: Monitoring healt for the SDGs, sustainable development goals. Geneva: World Health Organization 28-30

Yahfoufi N, Alsadi N, Jambi M, Matar C Yahfoufi N, Alsadi N, Jambi M, Matar C (2018) The immunomodulatory and anti-Inflammatory role of polyphenols. Nutrients 10(11):1618. https://doi.org/10.3390/nu10111618. PMid:30400131

Downloads

Published

2024-09-17

Issue

Section

Articles

How to Cite

Employment of Eugenia unifl ora in glycemic control and prevention of diabetes mellitus complications: a systematic review and meta-analysis. (2024). Revista Brasileira De Plantas Medicinais Brazilian Journal of Medicinal Plants, 24(3), 99-111. https://doi.org/10.70151/6zhsh535