Evaluation of antimicrobial activity and allelopathic effects on seed germination and soil fungus with Bidens pilosa extracts (Asteraceae)

Authors

DOI:

https://doi.org/10.70151/cqy8yj56

Keywords:

Picão-preto, Penicillium sp., Phytotoxicity, Lactuca sativa, Capsicum annuum

Abstract

Bidens pilosa, popularly known as picão-preto, is an erect herbaceous, considered invasive of commercial crops, growing spontaneously in Brazilian crops. Despite its use in folk medicine to treat angina, diabetes and hepatitis, studies of the species are scarce. This research work carried out for the chemical constituents Bidens pilosa extract, evaluated antimicrobial activity and the inhibitory potential of the soil fungus Penicillium sp., as well as allelopathic effect on germination. Seeds and leaves were used for preparation of aqueous extracts to 5%. The extracts were subjected to phytochemical screening, and evaluation of the antimicrobial activity by Pour-plate technique. Phytotoxicity tests were evaluated by allelopathy in Lactuca sativa seeds and Capsicum annuum, and action antifungal against the fungus Penicillium sp. The results showed phytochemicals chemically dependent variability in the part of the plant used. The evaluation against pathogenic micro-organisms showed no activity under the conditions and concentrations tested (0.5, 1.0, 2.0 and 4.0%). Allelopathic tests showed stimulation of the radicle and hypocotyl L. sativa seeds and C. annuum, at a concentration of 1% extract of leaves of Bidens pilosa, while the concentration of 4% was observed inhibition of growth both the parts. The evaluation of the antifungal action fungus showed 26.7% inhibition at a concentration of 4% extract. These results indicate that the species can be used in the search for new herbicides molecules less toxic to the environment and to humans.

Downloads

Download data is not yet available.

Author Biographies

  • Cassieli Dalposso Bee, Pontifícia Universidade Católica do Paraná

    Escola de Ciências da Vida

  • Brunna Ricci Falcão, Pontifícia Universidade Católica do Paraná

    Escola de Ciências da Vida

  • Khaoanny Souza, Pontifícia Universidade Católica do Paraná

    Escola de Ciências da Vida

  • Patricia Terron Ghezzi da Mata, Pontifícia Universidade Católica do Paraná

    Escola de Ciências da Vida

References

Abajo C, Boffill MA, Campo J, Méndez MA, González Y, Mitjans M, Vinardell MP (2004) In vitro study of the antioxidant and immunomodulatory activity of aqueous infusion of Bidens pilosa. J Ethnopharmacology 93:319-323. https://doi.org/10.1016/j.jep.2004.03.050

Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopatol 30:603-635. https://doi.org/10.1146/annurev.py.30.090192.003131

Beveridge THJ, Li TSC, Drover JCG (2002) Phytosterol content in american ginseng seed oil. J Agric Food Chem 50:744–750. https://doi.org/10.1021/jf010701v

Borges CC (2009) Análise Farmacognóstica de Bidens pilosa (L.) (Asteraceae). 27p. Trabalho de conclusão de curso (Graduação – área de concentração em Farmácia). Departamento de Farmácia. Universidade do Extremo Sul Catarinense, Criciúma, Brasil.

Brasil (1995) Ministério da Saúde. Secretaria de Vigilância Sanitária. Portaria SVS nº 6 de 31.01.95. Institui e normaliza o registro de produtos fitoterápicos junto ao Sistema de Vigilância Sanitária. Diário Oficial da União. 200:1-1523.

Carvalho ACB (2008) Plantas Medicinais e Fitoterápicos: Regulamentação Sanitária e Proposta de Modelo de Monografia para Espécies Vegetais Oficializadas no Brasil. 318p. Tese (Doutorado – área de concentração em Ciências da Saúde), Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Distrito Federal, Brasil.

Bauer AW, Kirby WM, Sherris JC, Turck M (1996) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493-496. https://pubmed.ncbi.nlm.nih.gov/5325707/

Cartaxo-Furtado NADEO, Sampaio TO, Xavier MA, Medeiros ADDE, Pereira JV (2015) Perfil fitoquímico e determinação da atividade antimicrobiana de Syzygium cumini (L.) Skeels (Myrtaceae) frente a microrganismos bucais. Rev Bras Plantas Med 17:1091-1096. https://doi.org/10.1590/1983-084X/14_153

Chiang YM, Chuang DY, Wang SY, Tsai PW, Shyur LF (2004) Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. J Ethnopharmacol. 95:409-419. https://doi.org/10.1016/j.jep.2004.08.010

Chien SC, Young PH, Hsu YJ, Chen CH, Tien YJ, Shiu SY, Li TH, Yang CW, Marimuthu P, Tsai LFL, Yang WC (2009) Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochem 70:1246-1254. https://doi.org/10.1016/j.phytochem.2009.07.011.

CLSI (2009a) Performance Standards for Antimicrobial Disk Susceptibility Test: Approved Standand. Wayne, PA: Clinical and Laboratory Standards Institute. 1-76.

CLSI (2009b) Methods for Dilution Antimicrobial Susceptibility Test for Bactéria That Grow Aerobically: Approved Standard. Wayne, PA: Clinical and Laboratory Standards Institute. 1-13.

Costa-Lotufo LV, Montenegro RC, Alves APNN, Madeira SVF, Pessoa C, Moraes MEA, Moraes MO (2009) A Contribuição dos Produtos Naturais como Fonte de Novos Fármacos Anticâncer: Estudos no Laboratório Nacional de Oncologia Experimental da Universidade Federal do Ceará. Rev Virtual Quím 2:47-58. https://doi.org/10.5935/1984-6835.20100006

Dias RA (1929) Pharmacopeia dos Estados Unidos do Brasil. 1.ed. São Paulo: Companhia Editora Nacional, 634p.

Duke JA, Martinez RV (1994) Amazonian Ethnobotanical Dictionary. Boca Raton: CRC Press, 215p.

Ferreira SH, Barata LES, Salles SLM, Queiroz SRR, Corazza R, Farias RC (1998) Medicamentos a partir de plantas medicinais no Brasil. 1.ed. São Paulo:Academia Brasileira de Ciências, 132p.

Fortes FO, Silva ACF, Almança MAK, Tedesco SB (2007) Promoção de enraizamento de microestacas de um clone de Eucalyptus sp. por Trichoderma ssp. Rev Árvore 31:221-228. https://doi.org/10.1590/S0100-67622007000200004

Franco IJ, Fontana VL (2004) Ervas e plantas: a medicina dos simples. 9.ed. Erechim: Editora Livraria Vida, 178p.

Garcez WS, Garcez FR, Silva LMGE, Sarmento UC (2013) Substâncias de Origem Vegetal com Atividade Larvicida Contra Aedes aegypti. Rev. Virtual Quím 5:363-393. https://doi.org/10.5935/1984-6835.20130034

Gonçalves JM (2010) Avaliação da atividade antimicrobiana e triagem fitoquímica dos extratos de espécies da família Asteraceae encontradas no semi-árido baiano. 91p. Dissertação (Mestrado – área de concentração em biotecnologia). Programa de Pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Bahia, Brasil.

Goyal AK, Middha SK, Sen A (2010) Evaluation of the DPPH radical scavenging activity, total phenols and antioxidant activities in Indian wild Bambusa vulgaris “Vittata” methanolic leaf extract. J Nat Pharm 1:40-45. https://doi.org/10.4103/2229-5119.73586

Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med 27:1-93. https://doi.org/10.1016/j.mam.2005.07.008

Hadas A (1976) Water uptake & germination ofleguminous seeds under changing externai water potential in osmotic solutions. J Exp Botany 27:480-489. http://www.jstor.org/stable/23688774

Haida KS, Parzianello I, Werner S, Garcia DR, Inácio CV (2007) Avaliação in vitro da atividade antimicrobiana de oito espécies de plantas medicinais. Arq Ciênc Saúde Unipar 11:185-192. https://core.ac.uk/download/pdf/235581644.pdf

Hicks KB, Moreau RA (2001) Phytosterols and phytostanols: functional food cholesterol busters. Food Technol 55:63–67.

Junior VFV, Pinto AC, Maciel MAM (2005) Plantas medicinais: Cura segura? Quím Nova 28:519-528. https://doi.org/10.1590/S0100-40422005000300026

Khan MR, Kihara M, Omoloso AD (2001) Anti-microbial activity of Bidens pilosa, Bischofia javanica, Elmerilia papuana and Sigesbekia orientalis. Fitoterapia 72:662-665. https://doi.org/10.1016/S0367-326X(01)00261-1

Kouznetsov VV, Méndez LYV, Gómez MM (2005) Recent progress in the synthesis of quinolines. Curr Organic Chem 9:141- 161. https://doi.org/10.2174/1385272053369196

Labouriau LG (1983) A germinação das sementes. 1.ed. Washington: Secretaria da Organizacao dos Estados Americanos, 173p.

Larcher W (2006) Ecofisiologia Vegetal. 3.ed. São Carlos: Rima, 529p.

Lopez CAA (2006) Considerações gerais sobre plantas medicinais. Ambiente: Gestão e Desenvolvimento 1:19-27.

Lorenzi H, Matos FJ (2008) Plantas medicinais no Brasil: nativas e exóticas. 2.ed. São Paulo: Plantarum, 544 p.

Miró CP, Ferreira AG, Aquila MEA (1998) Alelopatia de frutos de erva-mate (Ilex paraguariensis) no desenvolvimento do milho. Pesq Agropec Brasil 33:1261-1270. https://seer.sct.embrapa.br/index.php/pab/article/view/4959

Monteiro JM, Albuquerque UP, Lins-Neto EMF, Araújo, EL, Amorim ELC (2006) Use patterns and knowledge of medicial species among two rural communities in Brazil’s semi-arid noryheastern region. J Ethnopharmacol 105:173-183. https://doi.org/10.1016/j.jep.2005.10.016

Mors WB, Rizzin CT, Pereira NA (2000) Medicinal plants of Brazil. Michigan: Reference Publications, 372p.

NCCLS (2003) Performance standards for antimicrobial disk susceptibility tests: approved standard. 8.ed. Pennsylvania: NCCLS, 58p.

Noleto GR, Mercê ALR, Iacomini M, Gorin PAJ, Soccol VT, Oliveira MBM (2002) Effects of a lichen galactomannan and its vanadyl (IV) complex on peritoneal macrohages and leishmanicidal activity. Mol Cell Biochem 233:73-83. https://doi.org/10.1023/A:1015566312032

Okoli IC, Ndujihe GE, Ogbuewu IP (2006) Frequency of isolation of Salmonella from 313 commercial poultry feeds and their anti-microbial resistance profiles, Imo State, Nigeria. Online J Health Allied Scs 5:1-10. https://doaj.org/article/53fe4928b128464292a74345e1f136df

Peng Y, Zhang L, Zeng F, Kennedy JF (2005) Structure and antitumor activities of the water-soluble polysaccharides from Ganoderma tsugae mycelium. Carbohydr Polym 59: 385-392. https://doi.org/10.1016/j.carbpol.2004.10.009

Pinho L, Souza PNS, Sobrinho EM, Almeida AC, Martins ER (2012) Atividade antimicrobiana de extratos hidroalcoolicos das folhas de alecrim- pimenta, aroeira, barbatimão, erva baleeira e do farelo da casca de pequi. Cienc Rural 42:1-6. https://doi.org/10.1590/S0103-84782012005000003

Nascimento RRG, Monteiro JA, Pimenta ATA, Trevisan MTS, Braz-Filho R, Souza EB, Silveira ER, Lima MAS (2015) Novos flavonoides de Margaritopsis carrascoana com atividade antioxidante. Quím Nova 38:60-65. https://doi.org/10.5935/0100-4042.20140289

Ranieri BD, Lana TC, Negreiros D, Araújo LM, Fernandes GW (2003) Germinação de sementes de Lavoisiera cordata e Lavoisiera francavillana (Melastomataceae), espécies simpátricas da Serra do Cipó, Brasil. Acta Bot Bras 17:523-530. https://doi.org/10.1590/S0102-33062003000400005

Rice EL (1984) Allelopathy. 2.ed. New York: Academic Press, 422 p.

Robison RK, Batt CA, Patel PD (2000) Encyclopédia of food microbiology. 1.ed. Sam Diego: Academic Press, 421p.

Santos JB, Cury JP (2011) Picão-Preto: uma planta daninha especial em solos tropicais. Planta Daninha 29:1159-1171. https://doi.org/10.1590/S0100-83582011000500024

Silva ICA, Aleixo AA, Aleixo AM, Figueiredo AP, Lemuchi MO, Lima LARS (2013) Análise Fitoquímica e Atividade Antioxidante do Extrato Hidroetanólico das Folhas de Psidium guajava L. (Goiabeira). Biochem Biotechnol Rep, 2:76-78. http://dx.doi.org/10.5433/2316-5200.2013v2n2espp76

Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3.ed. London: Academic Press, 785p.

Soares GLG, Vieira TR (2000) Inibição da germinação e do crescimento radicular de alface (cv. Grand Rapids) por extratos aquosos de cinco espécies de Gleicheniaceae. Floresta e Ambiente 7:190-197.

Sousa LN, Vieira LM, Silva MJM, Lima A (2011) Caracterização nutricional e compostos antioxidantes em resíduos de polpas de frutas tropicais. Ciênc Agrotec 35:554-559. https://doi.org/10.1590/S1413-70542011000300017

Steyn PS (1995) Mycotoxins, geral view, Chemistry and strutura. Toxicol letters 82/83:843- 851. https://doi.org/10.1016/0378-4274(95)03525-7

Stuelp-Campelo PM, Oliveira MBM, Leao AMAC, Carbonero ER, Gorin PAJ, Iacomini M (2002) Effect of a soluble α-Dglucan from the lichenized fungus Ramalina celastri on macrophage activity. Int Immunopharmacol 2:691-698. https://doi.org/10.1016/s1567-5769(02)00003-6

Yu H, Sutton JC (1997) Morphological development and interations of Gliocladium roseum and Botrytis cinerea in raspberry. CPS 19:237-336. https://doi.org/10.1080/07060669709500518

Talarico LB, Zibetti RGM, Faria PCS, Scolaro LA, Duarte MER, Noseda MD, Pujol CA, Damonte, EB (2004) Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Intern J Biol Macromol 34:63-71. https://doi.org/10.1016/j.ijbiomac.2004.03.002

Trabulsi LR, Alterthum, F (2008) Microbiologia. 5.ed. São Paulo: Atheneu, 384p.

Valdés HAL, Rego HPL (2001) Bidens pilosa Linné. Rev Cubana Plant Med 6:28-33, 2001. scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962001000100007

Younes RN, Varella D, Suffredini IB (2000) Extração e rastreamento de novas drogas em plantas brasileiras. Acta Oncol Bras 20:15-19. https://accamargo.phlnet.com.br/Acta/AOB200020(1)p.15-9.pdf

Published

2024-09-17

Issue

Section

Articles

How to Cite

Evaluation of antimicrobial activity and allelopathic effects on seed germination and soil fungus with Bidens pilosa extracts (Asteraceae). (2024). Revista Brasileira De Plantas Medicinais Brazilian Journal of Medicinal Plants, 23(4), 194-202. https://doi.org/10.70151/cqy8yj56