Interactions of copper and phosphorus in accessions of Pfaffia glomerata: effect on growth and yield of β-ecdysone

Authors

DOI:

https://doi.org/10.70151/vkhn6y66

Keywords:

Brazilian ginseng, heavy metal, P and Cu interaction, secondary metabolite

Abstract

The increase in copper content (Cu) in soil by antropogenic actions can cause severe damage to plants. This study aimed to evaluate the effects of increasing levels of Cu and phosphorus (P) on the growth and production of β-ecdysone of two accessions (JB e BRA) of Pfaffia glomerata. The experiment was carried out under greenhouse conditions in pots containing 4.0 kg of an Ultisol soil with four Cu levels (control, 20, 40 and 80 mg/kg) and three P levels (10, 60 and 120 mg/kg) for 90 days. Root and leaf Cu concentration in JB accession linearly decreased with increasing Cu levels in the presence of 60 mg P/kg soil. On the other hand, in general, at 10 and 120 mg P/kg soil, root and leaf Cu concentration increased with increasing Cu levels. The increase in soil Cu availability reduced the P concentration in leaves. In the presence of 60 mg P/kg soil, total dry matter in JB accession linearly increased with increasing Cu levels. The maximum total dry mass in BRA accession occurred at 40 mg Cu/kg and 10 mg P/kg of soil. The addition of P and Cu only influenced the root β-ecdysone accumulation in JB accession, where at 60 mg P/kg soil it linearly increased with increasing Cu levels. Therefore, both P. glomerata accessions showed significant variability for plant biomass production and root β-ecdysone accumulation in relation to changes in soil Cu and P levels, but JB accession was more responsive.

Downloads

Download data is not yet available.

Author Biographies

  • Fernando Teixeira Nicoloso, Universidade Federal de Santa Maria

    Departamento de Biologia

  • Franciele Antônia Neis, Universidade Federal de Santa Maria

    Departamento de Biologia

  • Julia Gomes Farias, Universidade Federal de Santa Maria

    Departamento de Biologia

  • Paulo Ademar Avelar Ferreira, Universidade Federal de Santa Maria

    Departamento de Solos

  • Hilda Hildebrand Soriani, Universidade Federal de Santa Maria

    Departamento de Biologia

  • Suzi Cerezer Uliana, Universidade Federal de Santa Maria

    Departamento de Biologia

  • Darlene Sausen, Universidade Federal de Santa Maria

    Departamento de Biologia

  • Amanda Leitão Gindri, Universidade Federal de Santa Maria

    Departamento de Farmácia Industrial

  • Melânia Palermo Manfron, Universidade Federal de Santa Maria

    Departamento de Farmácia Industrial

  • Sidinei José Lopes, Universidade Federal de Santa Maria

    Departamento de Fitotecnia

  • Valderi Luiz Dressler, Universidade Federal de Santa Maria

    Departamento de Química

References

Bolan NS, Khan MAR, Tillman RW, Naidu R, Syers JK (1999) The effects of anion sorption on sorption and leaching of cadmium. Aust J Soil Res 37:445-460. https://doi.org/10.1071/S97046

Bravin M, Le Merrer B, Denaix L, Schneider A, Hinsinger P (2010) Copper uptake kinetics in hydroponically-grown durum wheat (Triticum turgidum durum L.) as compared with soil’s ability to supply copper. Plant Soil 331:91-104. http://dx.doi.org/10.1007/s11104-009-0235-3

Calgaroto NS, Cargnelutti D, Rossato LV, Farias JG, Nunes ST, Tabaldi LA, Antes FG, Flores EMM, Schetinger MRC, Nicoloso FT (2011) Zinc alleviates mercury-induced oxidative stress in Pfaffia glomerata (Spreng.) Pedersen. BioMetals 24:959-971. https://doi.org/10.1007/s10534-011-9457-y.

Cao RX, Ma LQ, Chen M, Singh SP, Harris WG (2003) Phosphate induced metal immobilization in a contaminated site. Environ Pollut 122:19-28. https://doi.org/10.1016/S0269-7491(02)00283-X

Devarenne TP, Sen-Michael B, Adler JH (1995) Biosynthesis of ecdysteroids in Zea mays. Phytochemistry 40:1125-1131. https://doi.org/10.1016/0031-9422(95)00435-A

Farias JG, Antes FLG, Nunes PAA, Nunes ST, Schaich G, Rossato LV, Miotto A, Girotto E, Tiecher TL, Dressler VL, Nicoloso FT (2013) Effects of excess copper in vineyard soils on the mineral nutrition of potato genotypes. Food Energy Secur 2:49-69. https://doi.org/10.1002/fes3.16

Ferreira PAA, Ceretta CA, Soriani HH, Tiecher TL, Soares CRFS, Rossato LV, Nicoloso FT, Brunetto G, Paranhos JT, Cornejo P (2015) Rhizophagus clarus and phosphate alter the physiological responses of Crotalaria juncea cultivated in soil with a high Cu level. Appl Soil Ecol 91:37–47. http://dx.doi.org/10.1016/j.apsoil.2015.02.008

Festucci-Buselli RA, Contin LAS, Barbosa LCA, Stuart J, Otoni WC (2008) Biosynthesis and potential functions of the ecdysteroid 20-hydroxyecdysone - a review. Botany 86:978-987. https://doi.org/10.1139/B08-049

Flores R, Brondani Jr D, Cezarotto Jr V, Giacomelli SR, Nicoloso FT (2010) Micropropagation and β-ecdysone content of the Brazilian ginsengs Pfaffia glomerata and Pfaffia tuberosa. in vitro Cell Dev Biol Plant 46:210-217. https://doi.org/10.1007/s11627-010-9286-7

Grebenok RJ, Venkatachari S, Adler JH (1994) Biosynthesis of ecdysone and ecdysone phosphates in spinach. Phytochemistry 35:1399-1408. https://doi.org/10.1016/S0031-9422(00)89731-9

Gupta DK, Huang HG, Nicoloso FT, Schetinger MRC, Farias JG, Li TQ, Razafindrabe BHN, Aryal N, Inouhe M (2013) Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata. Ecotoxicology 22:1403-1412. https://doi.org/10.1007/s10646-013-1126-1

Kamada T, Picoli EAT, Alfenas AC, Cruz CD, Vieira RF, Otoni WC (2009a) Diversidade genética de populações naturais de Pfaffia glomerata (Spreng.) Pedersen estimada por marcadores RAPD. Acta Sci Agron 31:403-409. https://doi.org/10.4025/actasciagron.v31i3.548

Kamada T, Picoli EAE, Vieira RF, Barbosa LCA, Cruz CD, Otoni WC (2009b) Variação de caracteres morfológicos e fisiológicos de populações naturais de Pfaffia glomerata (Spreng.) Pedersen e correlação com a produção de β-ecdisona. Rev Bras Plantas Med 11:247-256. https://doi.org/10.1590/S1516-05722009000300004

Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673-82. https://doi.org/10.1016/j.plaphy.2010.05.005

Liu J, Duan CQ, Zhu YN, Zhang XH, Wang CX (2007) Effect of chemical fertilizers on the fractionation of Cu, Cr and Ni in contaminated soil. Environ Geol 2:1601-1606. https://doi.org/10.1007/s00254-006-0604-7

Maksymiec W (1998) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321-342. https://doi.org/10.1023/A:1006818815528

Maldaner J, Nicoloso FT, Tabaldi LA, Cargnelutti D, Skrebsky EC, Rauber R, Gonçalves JF, Rossato LV (2015) Aluminum accumulation in two Pfaffia glomerata genotypes and its growth effects. Cien Rural 45:1013-1020. https://doi.org/10.1590/0103-8478cr20140439

Marschner P (2012) Marschner’s Mineral Nutrition of Higher Plants. 3.ed. Amsterdam: Elsevier. 651p.

Michaud AM, Chappellaz C, Hinsinger P (2008) Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil 310:151-165. https://doi.org/10.1007/s11104-008-9642-0

Miotto A, Ceretta CA, Brunetto G, Nicoloso FT, Girotto E, Farias JG, Tiecher TL, De Conti L, Trentin G (2010) Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant Soil 374:593-610. https://doi.org/10.1007/s11104-013-1886-7

Pérez-Novo C, Bermúdez-Couso A, López-Periago E, Fernández-Calviño D, Arias-Estévez M (2009) The effect of phosphate on the sorption of copper by acid soils. Geoderma 150:166–170. https://doi.org/10.1016/j.geoderma.2009.02.001

Sarioglu M, Atay UA, Cebeci Y (2005) Removal of copper from aqueous solutions by phosphate rock. Desalination 181:303-311. https://doi.org/10.1016/j.desal.2005.04.009

Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351-1365. https://doi.org/10.1093/jexbot/53.372.1351

Serra LZ, Felipe DF, Cortez DAG (2012) Quantification of β-ecdysone in different parts of Pfaffia glomerata by HPLC. Rev Bras Farmacogn 22:1349-1354. https://doi.org/10.1590/S0102-695X2012005000114

Singh SK, Badgujar GB, Reddy VR, Fleisher DH, Timlin DJ (2013) Effect of phosphorus nutrition on growth and physiology of cotton under ambient and elevated carbon dioxide. J Agron Crop Sci 199:436-448. https://doi.org/10.1111/jac.12033

Skrebsky EC, Nicoloso FT, Maldaner J, Rauber R, Castro GY, Jucoski GO, Santos DR (2008) Caracterização das exigências nutricionais de mudas de Pfaffia glomerata em Argissolo Vermelho distrófico arsênico pela técnica do nutriente faltante. Cien Rural 38:989-996. https://doi.org/10.1590/S0103-84782008000400013

Soares CRFS, Siqueira JO, Carvalho JG, Guilherme LRG (2006) Micorriza arbuscular e nutrição fosfática na toxidez de zinco para Trema [Trema micrantha (L.) Blum.]. Rev Bras Cienc Solo 30:665-675. https://www.redalyc.org/articulo.oa?id=180214057007

Thummel CS, Chory J (2002) Steroid signaling in plants and insects – common themes, different pathways. Genes Dev 16:3113-3129. https://doi.org/10.1101/gad.1042102

Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145-156. https://doi.org/10.1590/S1677-04202005000100012

Downloads

Published

2024-09-18

Issue

Section

Articles

How to Cite

Interactions of copper and phosphorus in accessions of Pfaffia glomerata: effect on growth and yield of β-ecdysone. (2024). Revista Brasileira De Plantas Medicinais Brazilian Journal of Medicinal Plants, 21(4), 253-260. https://doi.org/10.70151/vkhn6y66