Antimicrobial activity of essential oil from Mimosa verrucosa Benth. and Illicium verum Hook.f. against planktonic and biomass bacterial cells

Authors

DOI:

https://doi.org/10.70151/1vw7fj54

Keywords:

microbiological resistance, monoterpene, phenylpropanoids, volatile oils

Abstract

The development of biofilms is responsible for 80% of microbial infections, which are highly resistant to conventional antibiotics. The study aimed to assess the antimicrobial activity of essential oils of Mimosa verrucosa Benth. and Illicium verum Hook.f. against planktonic and sessile cells and evaluate toxicity. Thirty compounds were identified, the main ones being a-pinene (12.6%), b-pinene (16.7%) and (E)-caryophyllene (14.2%) for M. verrucosa, and estragole (4.2%) and anethole (86.8%) for I. verum. The minimum inhibitory concentrations of the EO of I. verum (29.40 µg/ml) and M. verrucosa (24.89 µg/ml) against planktonic cells showed 99% efficacy against all cells tested (sensitive and resistant Staphylococcus aureus and Escherichia coli). In sessile cells, essential oils of I. verum and M. verrucosa showed efficacy against sensitive S. aureus. The minimum bactericidal concentration (MBC) test revealed that I. verum caused cell death in sensitive S. aureus and E. coli. However, M. verrucosa only showed bactericidal activity against planktonic cells. Considering the expanding resistance to antimicrobials, the EOs tested represent an important therapeutic option, especially against S. aureus and E. coli, which can produce biofilms on various surfaces, becoming a serious public health problem.

Downloads

Download data is not yet available.

Author Biographies

  • Adriana Barbosa da Rocha, Universidade Federal Rural do Rio de Janeiro

    Laboratório de Farmacognosia e Bioativos Naturais, Instituto de Ciências Biológicas e da Saúde

  • Thereza Cristina da Costa Patricio, Universidade Federal Rural do Rio de Janeiro

    Microbiologia e Imunologia Veterinária, Instituto de Veterinária

  • Danniel Cosme Neves Grillo, Universidade Federal Rural do Rio de Janeiro

    Laboratório de Estresse Oxidativo em Microrganismos, Instituto de Química

  • Mayara Gomes Oliveira, Universidade Federal Rural do Rio de Janeiro

    Microbiologia e Imunologia Veterinária, Instituto de Veterinária

  • Hosana dau Ferreira de Souza, Universidade Federal Rural do Rio de Janeiro

    Microbiologia e Imunologia Veterinária, Instituto de Veterinária

  • Nayana de Figueiredo Pereira, Universidade Federal Rural do Rio de Janeiro

    Laboratório de Farmacognosia e Bioativos Naturais, Instituto de Ciências Biológicas e da Saúde

  • Bianca Augusto de Souza, Universidade Federal Rural do Rio de Janeiro

    Laboratório de Farmacognosia e Bioativos Naturais, Instituto de Ciências Biológicas e da Saúde

  • Shana de Mattos de Oliveira Coelho, Universidade Federal Rural do Rio de Janeiro

    Microbiologia e Imunologia Veterinária, Instituto de Veterinária

  • Cristiano Jorge Riger, Universidade Federal Rural do Rio de Janeiro

    Laboratório de Estresse Oxidativo em Microrganismos, Instituto de Química

  • Douglas Siqueira de Almeida Chaves, Universidade Federal Rural do Rio de Janeiro

    Laboratório de Farmacognosia e Bioativos Naturais, Instituto de Ciências Biológicas e da Saúde

References

Abirami SG, Mani KS, Devi MN, Devi PN (2014) The antimicrobial activity of Mimosa pudica L. Int J Ayur Pharma Res 2(1):1-4. https://ijapr.in/index.php/ijapr/article/view/289

Adams, RP (2007) Identification of essential oil components by gas chromatography/ mass spectrometry, 4th ed. Allured Publ., Carol Stream. 804p.

Albano M, Crulhas BP, Alves FCB, Pereira AFM, Andrade BFMT (2019) Antibacterial and anti-biofilm activities of cinnamaldehyde against S. epidermidis. Microb Pathog 126:231–238. https://doi.org/10.1016/j.micpath.2018.11.009

BrCast – Brazilian Committee on Antimicrobial Susceptibility Testing, 2023. in: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recom mendations_for_MIC_determination_of_colistin_March_2016.pdf.

Bussmann RW, Malca G, Glenn A, Sharon D, Nilsen B, Parris B, Dubose D, Ruiz D, Saleda J, Martinez M, Carillo L, Walker K, Kuhlman A, Townesmith A (2011) Toxicity of medicinal plants used in traditional medicine in Northern Peru. J Ethnopharmacol 137(1):121-40. https://doi.org/10.1016/j.jep.2011.04.071

Cerca N, Azevedo NF (2012) Biofilmes na saúde, no meio ambiente, na indústria, Publindústria, 1st ed. Braga, Porto. 398p.

Condò C, Anacarso I, Sabia C, Iseppi R, Anfelli I, Forti L, Niederhäusern S, Bondi M, Messi P (2020) Antimicrobial activity of spices essential oils and its effectiveness on mature biofilms of human pathogens. Nat Prod Res 34(4):567-574. https://doi.org/10.1080/14786419.2018.1490904

Davey ME, O'toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847-67. https://doi.org/10.1128/MMBR.64.4.847-867.2000

de Souza Araújo E, Pimenta AS, Feijó FMC, Castro RVO, Fasciotti M (2018) Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. J Appl Microbiol 124(1):85-96. https://doi.org/10.1111/jam.13626

de Souza ERP, Braz MVDC, Castro RN, Pereira MD, Riger CJ (2023) Influence of microbial fermentation on the antioxidant activity of phenolic substances in Saccharomyces cerevisiae. J Appl Microbiol 134(8):lxad148. https://doi.org/10.1093/jambio/lxad148

Dos Santos Silva RA, Calumby RJN, da Silva Santos IK, da Silva SAS, de Almeida LM, Nascimento TG, Junior IDB (2020) Technological prospection of Antibacterial and antifungal Potential of star anise (Illicium verum Hook.f.). Rev. Humanid Inov 7(4): 327-338.

Epifanio NMM, Cavalcanti LRI, Dos Santos KF, Duarte PSC, Kachlicki P, Ożarowski M, Riger CJ, Chaves DAS (2020) Chemical characterization and in vivo antioxidant activity of parsley (Petroselinum crispum) aqueous extract. Food Funct 11(6):5346-5356. https://doi.org/10.1039/d0fo00484g

Franco CJP, Ferreira OO, Cruz JN, Varela ELP, de Moraes ÂAB, Nascimento LD, Cascaes MM, Souza Filho APDS, Lima RR, Percário S (2022) Phytochemical profile and herbicidal (phytotoxic), antioxidants potential of essential oils from Calycolpus goetheanus (Myrtaceae) specimens, and in silico study. Molecules 27(15):4678. https://doi.org/10.3390/molecules27154678

Gajewska J, Chajęcka-Wierzchowska W (2020) Biofilm formation ability and presence of adhesion genes among coagulase-negative and coagulase-positive staphylococci isolates from Raw Cow's Milk. Pathogens (8):654. https://doi.org/10.3390/pathogens9080654

Ganesh PS, Veena K, Senthil R, Iswamy K, Ponmalar EM, Mariappan V, Girija SS, Vadivelu J, Nagarajan S, Challabathula D, Shankar EM (2022) Biofilm-associated agr and sar quorum sensing systems of Staphylococcus aureus are inhibited by 3-hydroxybenzoic acid derived from Illicium verum. ACS Omega 7(17):14653-14665. https://doi.org/10.1021/acsomega.1c07178

Ghazal TSA, Schelz Z, Vidács L, Szemerédi N, Veres K, Spengler G, Hohmann J (2022) Antimicrobial, multidrug resistance reversal and biofilm formation inhibitory effect of Origanum majorana extracts, essential oil and monoterpenes. Plants 11(11):1432. https://doi.org/10.3390/plants11111432

Goetghebeur M, Landry PA, Han D, Vicente C (2007) Methicillin-resistant Staphylococcus aureus: A public health issue with economic consequences. Can J Infect Dis Med Microbiol (1):27-34. https://doi.org/10.1155/2007/253947

Jain S, Jain R, Vlietinck A (2004) In vivo and in vitro antimicrobial efficacy of Mimosa hamata. Indian J Biotech 3:271–273.

Jiang T, Li, M (2013) Quorum sensing inhibitors: a patent review. Expert Opin Ther Pat 7:867–894. https://doi.org/10.1517/13543776.2013.779674

Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI (2018) Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4(12):e01067. https://doi.org/10.1016/j.heliyon.2018.e01067

Majeed I, Rizwan K, Ashar A, Rasheed T, Amarowicz R, Kausar H, Zia-Ul-Haq M, Marceanu LG (2021) A comprehensive review of the ethnotraditional uses and biological and pharmacological potential of the genus Mimosa. Int J Mol Sci 22(14):7463. https://doi.org/10.3390/ijms22147463

Oogai Y, Matsuo M, Hashimoto M, Kato F, Sugai M, Komatsuzawa H (2011) Expression of virulence factors by Staphylococcus aureus grown in serum. Appl Environ Microbiol 77(22):8097-105. https://doi.org/10.1128/AEM.05316-11

Ortega E, Abriouel H, Lucas R, Gálvez A (2010) Multiple roles of Staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins 2(8):2117-31. https://doi.org/10.3390/toxins2082117

Outemsa B, Oubihi A, Jaber H, Haida S, Kenfaoui I, Ihamdan R, Azhari HA, Ouhssine M (2021) Chemical composition, antioxidant and antimicrobial activities of the essential oil of Illicium verum. E3S Web Conf 319: 01052-01059. https://doi.org/10.1051/e3sconf/202131901052

Padilha IQM, Pereira AV, Rodrigues OG, Siqueira-Junior JP, Pereira MSV (2010) Antimicrobial activity of Mimosa tenuiflora (Willd.) Poir. from Northeast Brazil against clinical isolates of Staphylococcus aureus. Rev Bras Farmacogn 20(1):45-47. https://doi.org/10.1590/S0102-695X2010000100010

Romanoski VS, Santos RAF (2017) Cytotoxic and antioxidant activity of Mimosa verrucosa Benth. Orbital: Electron J Chem 9:100-104. https://doi.org/10.17807/orbital.v9i2.868

Silva SANM, Barros AB, Souza JMT, Moura AF, Araújo AR, Mendes MGA, Daboit TC, Silva DA, Araújo AJ, Filho JDBM (2020) Phytochemical and biological prospection of Mimosa genus plants extracts from Brazilian northeast. Phytochem Lett 39:173-181. https://doi.org/10.1016/j.phytol.2020.08.010

Villarreal SML, Luévano JHE, Hernández RAP, García ES, Star MJV, Ríos RC, Tapia MG, Luis OER, Montes AC (2022) Preliminary study of the antimicrobial, anticoagulant, antioxidant, cytotoxic, and anti-Inflammatory activity of five selected plants with therapeutic application in dentistry. Int J Environ Res Public Health. 19(13):7927. https://doi.org/10.3390/ijerph19137927

Wang GW, Hu WT, Huang BK, Qin LP (2011) Illicium verum: a review on its botany, traditional use, chemistry and pharmacology. J Ethnopharmacol 136(1):10-20. https://doi.org/10.1016/j.jep.2011.04.051

Wang Q, Jiang L, Wen Q (2007) Effect of three extraction methods on the volatile component of Illicium verum Hook.f. analyzed by GC-MS. Wuhan Univ J Nat Sci 12(3):529-534. https://doi.org/10.1007/s11859-006-0080-7

Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A (2019) Essential oils as antimicrobial agents-myth or real alternative? Molecules 24(11):2130. https://doi.org/10.3390/molecules24112130

World Health Organization – WHO (2022) Global antimicrobial resistance and use surveillance system (‎GLASS)‎ report: 2022. Available at: https://www.who.int/publications/i/item/9789240062702. Accessed on: 18 Jul 2024.

Yang EC, Hsieh YY, Chuang LY (2021). Comparison of the phytochemical composition and antibacterial activities of the various extracts from leaves and twigs of Illicium verum. Molecules 26(13):3909. https://doi.org/10.3390/molecules26133909

Downloads

Published

2024-08-30

Issue

Section

Articles

How to Cite

Antimicrobial activity of essential oil from Mimosa verrucosa Benth. and Illicium verum Hook.f. against planktonic and biomass bacterial cells. (2024). Revista Brasileira De Plantas Medicinais Brazilian Journal of Medicinal Plants, 26(1), 35-44. https://doi.org/10.70151/1vw7fj54