Phytochemical analysis and biological potential of Argentinian plant essential oils and extracts

Authors

DOI:

https://doi.org/10.70151/6yaqdm47

Keywords:

Antioxidant activity, Anti-inflammatory activity, Chemical composition, Argentine northwestern plants

Abstract

Our aim is to characterize the chemical composition, antimicrobial, antioxidant and anti-inflammatory potentials of the essential oils (EOs) and ethanolic extracts (EEs) of five northwest native plants in Argentina. The EOs and EEs were obtained from Lippia turbinata, Clinopodium gilliesii, Lippia integrifolia, Zuccagnia punctata, and Senecio subulatus var. salsus. EOs and EEs phytochemical composition were determined by GC-MS analysis and spectrophotometric methods. Antibacterial activity was assessed against Gram-negative and -positive pathogenic bacteria. Antioxidant activity was evaluated by DPPH radical scavenging assay and anti-inflammatory potential was determined by cyclooxygenase (COX-2) inhibition assay. EOs and EEs of all assayed plant species showed weak antibacterial effect. The EEs had stronger scavenging activity than the EOs. The best results were achieved for Z. punctata EE followed by L. turbinata and C. gilliesii EEs. The EOs exhibited greater inhibitory activity towards the COX-2 than EEs. C. gilliesii and L. integrifolia EOs showed the highest COX-2 inhibitory activity. These results would indicate that antioxidant activity is concentrated in the non-volatile fraction of the plants whether the anti-inflammatory activity is in the volatile one. This work contributes to knowledge of biological properties of plants from our region and could help to discover compounds with potential therapeutic uses.

Downloads

Download data is not yet available.

Author Biographies

  • Natalia Barbieri, Universidad Nacional de Chilecito/Instituto de Ambiente de Montaña y Regiones Áridas

    CONICET, Departamento de Ciencias Básicas y Tecnológicas

  • Miguel Gilabert, Universidad Nacional de Tucumán

    Facultad de Bioquímica, Química y Farmacia, CONICET, Departamento de Química Orgánica

References

Alonso J, Desmarchelier C (2015) Plantas medicinales autóctonas de la Argentina: bases científicas para su aplicación en atención primaria de la salud. 1.ed. Buenos Aires: Corpus Editorial. 748p.

Álvarez SL, Cortadi A, Juárez MA, Petenatti E, Tomi F, Casanova J, van Baren CM, Zacchino S, Vila R (2012) (−)-5,6-Dehydrocamphor from the antifungal essential oil of Zuccagnia punctata. Phytochem Lett 5:194–199. https://doi.org/10.1016/j.phytol.2011.12.008

Arancibia L, Naspi C, Pucci G, Arce M (2010) Aromatic plants from Patagonia: chemical composition and antimicrobial activity of the essential oil of Senecio mustersii and S. subpanduratus. Bol Latinoam Caribe Plantas Med Aromáticas 9:123–126

Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20:200–216. https://doi.org/10.1038/s41573-020-00114-z

Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng 117:426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014

Barbieri N, Costamagna M, Gilabert M, Perotti M, Schuff C, Isla MI, Benavente A (2016) Antioxidant activity and chemical composition of essential oils of three aromatic plants from La Rioja province. Pharm Biol 54:168–173. https://doi.org/10.3109/13880209.2015.1028077

Cabana R, Silva LR, Valentão P, Viturro CI, Andrade PB (2013) Effect of different extraction methodologies on the recovery of bioactive metabolites from Satureja parvifolia (Phil.) Epling (Lamiaceae). Ind Crops Prod 48:49–56. https://doi.org/10.1016/j.indcrop.2013.04.003

Clinical and Laboratory Standards Institute (CLSI) (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, ninth edition. Document M07-A9

Cushnie TPT, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38:99–107. https://doi.org/10.1016/j.ijantimicag.2011.02.014

Dai J, Mumper RJ (2010) Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352. https://doi.org/10.3390/molecules15107313

Dambolena JS, Zunino MP, Banchio E, Lucini EI, Biurrun FN, Rotman A, Ahumada O, Zygadlo JA (2008) Essential oil composition of three species of Senecio from Argentina. J Essent Oil Bear Plants 11:623–627. https://doi.org/10.1080/0972060X.2008.10643677

De Cássia da Silveira e Sá R, Andrade LN, De Sousa DP (2013) A review on anti-inflammatory activity of monoterpenes. Molecules 18:1227–1254. https://doi.org/10.3390/molecules18011227

de Lavor ÉM, Fernandes AWC, de Andrade Teles RB, Leal AEBP, de Oliveira Júnior RG, Gama E Silva M, de Oliveira AP, Silva JC, de Moura Fontes Araújo MT, Coutinho HDM, de Menezes IRA, Picot L, da Silva Almeida JRG (2018) Essential oils and their major compounds in the treatment of chronic inflammation: A review of antioxidant potential in preclinical studies and molecular mechanisms. Oxid Med Cell Longev 2018:6468593. https://doi.org/10.1155/2018/6468593

Dirar AI, Alsaadi DHM, Wada M, Mohamed MA, Watanabe T, Devkota HP (2019) Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South Afr J Bot 120:261–267. https://doi.org/10.1016/j.sajb.2018.07.003

Farhadi F, Khameneh B, Iranshahi M, Iranshahy M (2019) Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res PTR 33:13–40. https://doi.org/10.1002/ptr.6208

Grzegorczyk-Karolak I, Kiss AK (2018) Determination of the phenolic profile and antioxidant properties of Salvia viridis L. shoots: A comparison of aqueous and hydroethanolic extracts. Molecules 23:1468. https://doi.org/10.3390/molecules23061468

Ikeda A, Funakoshi E, Araki M, Ma B, Karuo Y, Tarui A, Sato K, Okuno Y, Kawai K, Omote M (2019) Structural modification of indomethacin toward selective inhibition of COX-2 with a significant increase in van der Waals contributions. Bioorg Med Chem 27:1789–1794. https://doi.org/10.1016/j.bmc.2019.03.021

Juliani HR, Koroch A, Simon JE, Biurrun FN, Castellano V, Zygadlo JA (2004) Essential oils from Argentinean aromatic plants. Acta Hortic 491–498. https://doi.org/10.17660/ActaHortic.2004.629.63

Lima B, López S, Luna L, Agüero MB, Aragón L, Tapia A, Zacchino S, López ML, Zygadlo J, Feresin GE (2011) Essential oils of medicinal plants from the central Andes of Argentina: Chemical composition, and antifungal, antibacterial, and insect-repellent activities. Chem Biodivers 8:924–936. https://doi.org/10.1002/cbdv.201000230

Luna L, Lima B, Tapia A, Feresin GE, Duschatzky C, Possetto M, Lampasona MP de, Schuff C (2008) Chemical composition and antibacterial activity of Satureja parvifolia (Phil.) Epling essential oil. J Essent Oil Bear Plants 11:106–111. https://doi.org/10.1080/0972060X.2008.10643605

Mahmoud SS, Croteau RB (2003) Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc Natl Acad Sci 100:14481–14486. https://doi.org/10.1073/pnas.2436325100

Marcial G, de Lampasona MP, Vega MI, Lizarraga E, Viturro CI, Slanis A, Juárez MA, Elechosa MA, Catalán CAN (2016) Intraspecific variation in essential oil composition of the medicinal plant Lippia integrifolia (Verbenaceae). Evidence for five chemotypes. Phytochemistry 122:203–212. https://doi.org/10.1016/j.phytochem.2015.11.004

Miguel MG (2010) Antioxidant and anti-Inflammatory activities of essential oils: A short review. Molecules 15:9252–9287. https://doi.org/10.3390/molecules15129252

Morán Vieyra FE, Boggetti HJ, Zampini IC, Ordoñez RM, Isla MI, Alvarez RMS, De Rosso V, Mercadante AZ, Borsarelli CD (2009) Singlet oxygen quenching and radical scavenging capacities of structurally-related flavonoids present in Zuccagnia punctata Cav. Free Radic Res 43:553–564. https://doi.org/10.1080/10715760902912264

Nuño G, Alberto MR, Arena ME, Zampini IC, Isla MI (2018) Effect of Zuccagnia punctata Cav. (Fabaceae) extract on pro-inflammatory enzymes and on planktonic cells and biofilm from Staphylococcus aureus: Toxicity studies. Saudi J Biol Sci 25:1713–1719. https://doi.org/10.1016/j.sjbs.2016.10.014

Ordóñez RM, Cardozo ML, Zampini IC, Isla MI (2010) Evaluation of antioxidant activity and genotoxicity of alcoholic and aqueous beverages and pomace derived from ripe fruits of Cyphomandra betacea Sendt. J Agric Food Chem 58:331–337. https://doi.org/10.1021/jf9024932

Pérez C, Agnese AM, Cabrera JL (1999) The essential oil of Senecio graveolens (Compositae): Chemical composition and antimicrobial activity tests. J Ethnopharmacol 66:91–96. https://doi.org/10.1016/S0378-8741(98)00204-9

Pérez Zamora CM, Torres CA, Aguado MI, Bela AJ, Nuñez MB, Bregni C (2016) Antibacterial activity of essential oils of Aloysia polystachya and Lippia turbinata (Verbenaceae). Bol Latinoam Caribe Plantas Med Aromáticas 15:199–205

Pestchanker MJ, Ascheri MS, Giordano OS (1985) Pyrrolizidine alkaloids from Senecio subulatus and S. glandulosus. Planta Med 51:165–167. https://doi.org/10.1055/s-2007-969439

Pestchanker MJ, Giordano OS (1986) Pyrrolizidine alkaloids from five Senecio Species. J Nat Prod 49:722–723. https://doi.org/10.1021/np50046a041

Quiroga PR, Grosso NR, Lante A, Lomolino G, Zygadlo JA, Nepote V (2013) Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia turbinata essential oils. Int J Food Sci Technol 48:642–649. https://doi.org/10.1111/ijfs.12011

Reynoso M, Coca MEB, Brodkiewicz IY, Jaime G, Perotti M, Schuff C, Vera NR (2018) Anti-inflammatory effects and safety of extracts and essential oil from Clinopodium gilliesii (Muña-Muña). Int J Pharm Sci Drug Res 10:306–314. https://doi.org/10.25004/IJPSDR.2018.100416

Shahverdi AR, Rafii F, Fazeli MR, Jamalifar H (2004) Enhancement of antimicrobial activity of furazolidone and nitrofurantoin against clinical isolates of Enterobacteriaceae by piperitone. Int J Aromather 14: 77–80. https://doi.org/10.1016/j.ijat.2004.04.007

Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In: Methods in Enzymology. Academic Press, pp 152–178

Velasco-Negueruela A, Pérez-Alonso MJ, Guzmán CA, Zygadlo JA, Ariza-Espinar L, Sanz J, García-Vallejo MC (1993) Volatile constitutents of four Lippia species from Córdoba (Argentina). J Essent Oil Res 5:513–524. https://doi.org/10.1080/10412905.1993.9698272

Yang C, Hu D-H, Feng Y (2015) Antibacterial activity and mode of action of the Artemisia capillaris essential oil and its constituents against respiratory tract infection-causing pathogens. Mol Med Rep 11: 2852–2860. https://doi.org/10.3892/mmr.2014.3103

Zampini IC, Vattuone MA, Isla MI (2005) Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts. J Ethnopharmacol 102:450–456. https://doi.org/10.1016/j.jep.2005.07.005

Zampini IC, Villena J, Salva S, Herrera M, Isla MI, Alvarez S (2012) Potentiality of standardized extract and isolated flavonoids from Zuccagnia punctata for the treatment of respiratory infections by Streptococcus pneumoniae: In vitro and in vivo studies. J Ethnopharmacol 140:287–292. https://doi.org/10.1016/j.jep.2012.01.019

Downloads

Published

2024-09-17

Issue

Section

Articles

How to Cite

Phytochemical analysis and biological potential of Argentinian plant essential oils and extracts. (2024). Revista Brasileira De Plantas Medicinais Brazilian Journal of Medicinal Plants, 25(1), 17-28. https://doi.org/10.70151/6yaqdm47